Group Theory
Week \#3, Lecture \#12
I Normal subgroups
Recall that a silgomp $H<G$ is called normal of

$$
\mathrm{ghg}^{-1} \in H, \forall h \in H, \forall g \in G
$$

Prop The following conditions are equivalent:
(1) $H<G$ is normal
(2) $g^{H} g^{-1}=H \quad, \forall g \in G$
(3) $g H=H g \quad \forall g \in G$
(4) Every left coset of HinG is also a right west.

Proof $(1) \Leftrightarrow(2)$: done last time
(2) $\Leftrightarrow(3)$: clear ($\begin{gathered}\text { multiply both sifter on the } \\ \text { nizutily either } g \text { or } g^{-1}\end{gathered}$
(3) \Rightarrow (4): obvious

$$
\begin{aligned}
& \text { multiply both sides on the } \\
& \text { rightists either g or } g^{-1}
\end{aligned}
$$

(4) \Rightarrow (3) Let $g H$ be a left coset of H in G. By assumption, $g H=H k$, for some $k \in G$.

$$
\begin{aligned}
\text { Note: } \quad g & =g \cdot e \in g H=H k \quad \Rightarrow g \in H k \cap H g \\
\therefore g & =e \cdot g \in H g \quad \Longrightarrow
\end{aligned} \quad \begin{aligned}
& \Rightarrow g=g \\
& \therefore g H
\end{aligned} \quad \begin{aligned}
& \text { since coset } \\
& \text { enter coincide or are dijiant })
\end{aligned}
$$

Recall $[G: H]=\#\{$ left corsets of H in $G\}$
\# \{ right coset of H in $a\}$
(this came out of the proof of Lagrange theorem, where we showed that all corsets of there in bijection)

- In one situation, there are moly 2 cosets:

$$
\begin{aligned}
G & =H \Perp g H & & \leftarrow \text { left cosets } \\
& =H \Perp H k & & \leftarrow \text { right cosets } \\
\therefore \quad g H & =H k & &
\end{aligned}
$$

By the poop $((4) \Rightarrow(1))$, 4 is normal sabroup of C
Remark. All subgroups of an abelian group G are normal subgounp3. $\quad\binom{$ since $\left.g h g^{-1}=h, \forall b, g \in G}{g h g^{-1} \in H}, \forall h \in H, g \in G\right)$
In pritivlar, left/right collets coincide in this setting.
Let's illustrate the difference between lefffright cosets and normal/non-nornal subgroups with an example from linear algebra orr fine ficlols.
Def A field is a commutative ring where even g non- zero element is invertible:

$$
(F,+, \cdot) \quad \begin{aligned}
& \left(F_{2}+, 0\right) \text { abelian gp } \\
\cdot & \left(F^{x}, \cdot, 1\right) \text { a delian } g p \\
\cdot & a(b+c)=a b+a c
\end{aligned}
$$

Eg: - Q, R,C

- \mathbb{Z}_{p}, p pine

Let: $G L_{n}(F)=\left\{A \in \operatorname{Mat}_{4 \times n}(F): A\right.$ invertible $\}$
4 $\operatorname{det} A \neq 0$
$n_{x n}$ matrices w/extiesin f
This is called the General Linear group ores F, i..e., the goop of invertible linear truurformations of the F-vector space $V=F^{n}$.
This group contains many interesting sulgroups
such as

$$
\begin{aligned}
S L_{n}(F) & =\left\{A \in G L_{n}(F): \operatorname{det}(A)=1\right\} \\
& =\operatorname{ker}\left(\operatorname{det}: G L_{n}(F) \longrightarrow\{ \pm 13)\right.
\end{aligned}
$$

Simplest nontrivial example: $\quad \mathbb{Z}_{2}=\{0,1\}$

$$
\begin{aligned}
& G L_{2_{11}}\left(\mathbb{Z}_{2}\right)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \quad \begin{array}{ll}
& a, b, c, d \in \mathbb{Z}_{2} \\
a d+b c=1
\end{array}\right\} \\
& S L_{2}\left(\mathbb{Z}_{2}\right)
\end{aligned}
$$

This goop has size 6, and is wot sahelian, since, eg

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \Rightarrow \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

In fact :(1) $G L_{2}\left(\mathbb{Z}_{2}\right) \cong S_{3} \simeq D_{3}$ (exercise!)
(2) This is the only non abdian goop of order 6 (The smallest non-abelian group.)
Exercise: What is the size of $G L_{n}\left(\mathbb{Z}_{p}\right)$?
Example Let $G=G L_{2}\left(\mathbb{Z}_{2}\right)$
and $\left.H=\left\{\begin{array}{ll}10 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1\end{array} 1\right)\right\}$

Questions: (1) Show that H is a sabgoomp of G.
(2) Compacte all it left and night cosets
(3) What is [द: H]?
(4) Is H a normal subgoonp?

Answers
(1) $I=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$ the idention matrix

$$
\bar{A}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad A \cdot A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

(2) Left cosets of H :

$$
\begin{aligned}
& \text { - } H=\left\{\left(\begin{array}{ll}
10 \\
0 & 1
\end{array}\right),\binom{0}{0}\right\} \\
& \text { - }\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) H=\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\} \\
& \text { - }\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right) H=\left\{\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\}
\end{aligned}
$$

Rought cosets of H

$$
\begin{array}{ll}
1 & H \\
\cdots & H\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\} \\
& H\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=\left\{\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\}
\end{array}
$$

(4) Left cosets are not right cosets (except tor H), so H is not a nomal sulgron ρ, by $((4)=(1))$ in Prop above.
On the other hand, of we take

$$
K=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\} \cong \mathbb{Z}_{3}
$$

then $[G: k)=2$, so $k \triangleleft G$. (Vento $k g=s k, \forall g \in G$)

II Images \& preimages
Let $\varphi: G \longrightarrow G^{\prime}$ be a homomorphism

- image of a subset $H \subseteq G: \quad \varphi(H)=\left\{y \in G^{\prime}: y=\varphi(x)\right\}$
preinage of a subset $H^{\prime} \subseteq G^{\prime}: \quad \varphi^{-1}\left(H^{\prime}\right)=\left\{x \in G: \varphi(x) \in H^{\prime}\right\}$
Prop (a) If $H<G$, then $\varphi(H)<G^{\prime}$.
(b) If $H \triangleleft G$, then $\varphi(H) \triangleleft \varphi(G)$.
(so, I φ surjective, then $\varphi(H) \Delta G^{\prime}$)
(c) If $H^{\prime}<G^{\prime}$, then $\varphi^{-1}\left(H^{\prime}\right)<G$.
(d) If $H^{\prime} \triangleleft G^{\prime}$, then $\varphi^{-1}\left(H^{\prime}\right) \triangleleft G$.

Proof (a) - olone in a poevious chass
(b) let $y \in \varphi(G), x \in \varphi(H)$. Then

$$
\begin{aligned}
& y=\varphi(a), x=\varphi(b) \text {, for sime } a+G \text {. } \\
& \therefore \quad \begin{aligned}
\quad y \times y^{-1} & =\varphi(a) \cdot \varphi(b) \cdot(\varphi(a))^{\prime} \\
& =\varphi(a)
\end{aligned} \\
& =\varphi(a) \varphi(b) \varphi\left(a^{2}\right) \\
& =\underset{H^{\infty} \text { since } H \Delta G}{\varphi\left(a b a^{-}\right)} \in \varphi(H) \\
& \therefore \varphi(H) \triangleleft \varphi(G) \text {. }
\end{aligned}
$$

(c), (d): exercize

Question Find C:G $\rightarrow G^{\prime}$, H ΔG st $\varphi(H) \notin G^{\prime}$.
III Cosets of the kernel of a homomuphism
Let $\varphi: G \rightarrow G$ be a homomirplasn sefine an equis ree. in G by
$a N_{\varphi} b \stackrel{a n t}{\Longleftrightarrow} \varphi(a)=\varphi(b)$

$$
\begin{aligned}
& \Longleftrightarrow \varphi(a) \cdot \varphi(a)^{-1}=e^{\prime} \\
& \Longleftrightarrow \varphi\left(a b^{-1}\right)=e^{\prime} \\
& \begin{array}{c}
\text { olef } \\
\text { of ker }
\end{array}
\end{aligned}
$$

where k: $=\operatorname{ker}(\varphi)=\varphi^{-1}\left(\left\{e^{r}\right)=\left\{x \in G: \varphi(x)=e^{\prime}\right\}\right.$
is the kernel of φ.
Prop (1) $R=\operatorname{ker}(\varphi)$ is a wormal subgroup of G
(2) φ is injective $\Leftrightarrow \operatorname{ker}(\varphi)=\{e\}$.

Proof (1) $x, y \in k \Rightarrow \varphi\left(x y^{-1}\right)=\varphi(x) \varphi\left(y^{-1}\right)=e^{\prime} \cdot e^{\prime}=e^{\prime}$

$$
\therefore x y^{-1} \in K \quad(\text { so } k<6)
$$

$x \in k, y \in G \Rightarrow \varphi\left(\eta x y^{-1}\right)=\varphi(y) \varphi(x) \varphi(y)^{-1}$

$$
\therefore \quad y x y^{-1} \in k
$$

$$
\begin{aligned}
& =\varphi(y) \cdot e^{\prime} \cdot \varphi(y)^{-1}=e^{\prime}
\end{aligned}
$$

(2) (\Leftrightarrow) obvions
(\Leftrightarrow) Suppose $x, y \in G$ and $\varphi(x)=\varphi(z)$
Thin

$$
\text { hen } \begin{align*}
& \varphi\left(x y^{-1}\right)=\varphi(x) \cdot \varphi\left(y^{-1}\right) \\
&=\varphi(x) \cdot \varphi(y)^{-1} \\
&=\varphi(x) \cdot \varphi(x)^{-1} \\
&=e^{\prime} \\
& \therefore x y^{-1} \in \operatorname{ker}(\varphi)=\{e\} \\
& \therefore x=y \tag{18}
\end{align*}
$$

Remante The kernel of a grup homomorplasm is the coulogne of the mullspace of a linear tronsformatim (or of a matix) in Guear algebon.

